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Abstract

There exist several approaches to improve the quality of
evolution. In this paper, a priori design knowledge as a
part of evolving systems is discussed. Further, experiments
are reported showing how a priori knowledge (data buses
and reuse) can be beneficial compared to gate level design
of multiplier circuits. The future goal of the work is to be
able to evolve systems for complex real-world applications
(image and signal processing).

1. Introduction

Many would like evolvable systems to become crucial in
the future development of computer systems as traditional
design schemes are reaching their limits. Increasing size
and complexity of electronic devices and systems have dur-
ing the recent years led to a demand for new design schemes
and tools. The new technology could be appropriate for sys-
tems implementing complex real-world applications within
image and signal processing. Much research is now con-
ducted on such applications to improve the performance as
well as the speed of processing using traditional algorithms.

Evolvable hardware (EHW) is promising but there is still
a long way to go before it is a real alternative to tradi-
tional design schemes [16]. By searching a larger design
search space, EHW may find solutions for a task, unsolv-
able, or more optimal than those found using traditional
design methods. However, this is also a problems since
the search space easily becomes too large [10, 23]. Start-
ing from scratch when evolving is not very biological moti-
vated. Human beings try to apply all their earlier knowledge
and skills when trying to solve a problem. If we are not
able to solve it by ourselves, we search knowledge either in

books/web etc. or by getting help from computer tools or
other people, who have more knowledge or skills, to solve
the problem. In evolution, there has been a tendency that
introducing human expert knowledge would limit the ex-
ploration of the large search space. Thus, risking to loose
interesting solutions that humans would not in their wildest
dreams have thought of. This is true, but so far few such
revolutionary systems have occurred.

Therefore, we find it appropriate to think it the other way
around. If we tell the system what we know already, the
evolution can go on from there to explore new and rev-
olutionary systems. This is motivated by “inventing the
wheel”: If you know about the wheel, there is a much higher
chance that you could invent a vehicle of some sort than if
you did not. Thus, in this paper we would like to introduce
some ideas about how human knowledge can be added to
evolution. Further, we include some experimental results.
For the rest of this introduction, we will give an overview
of existing approaches applied to improve the evolvability
of circuits and systems.

Various experiments on speeding up the GA computa-
tion have been undertaken [1]. The schemes involve fitness
computation in parallel or a partitioned population evolved
in parallel. Experiments are focussed on speeding up the
GA computation, rather than dividing the application into
subtasks. This approach assumes that GA finds a solution
if it is allowed to compute enough generations. When small
applications require a very long evolution time, there would
probably be strict limitations on the systems evolvable even
by parallel GA.

Other approaches to the problem have used variable
length chromosomes [5]. Another option, called function
level evolution, is to apply building blocks more complex
than digital gates [12]. Most work is based on fixed func-
tions. However, there has been work in Genetic Program-



ming for evolvingthe functions [9]. The method is called
Automatically Defined Functions (ADF). Experiments on
extracting general principles when evolving systems of in-
cremental size are reported in [11].

An improvement of artificial evolution — called co-
evolution, has been proposed [4]. In co-evolution, a part of
the data which defines the problem co-evolves simultane-
ously with a population of individuals solving the problem.
This could lead to a solution with a better generalization
than a solution based only on the initial data. A variant
of co-evolution — called cooperative co-evolutionary algo-
rithm, has been proposed by De Jong and Potter [6, 13]. It
consists of parallel evolution of sub-structures, which inter-
act to build more complex higher level structures. Com-
plete solutions are obtained by assembling representatives
from each group of sub-structures together. In that way,
the fitness measure can be computed for the top level sys-
tem. However, by testing a number of individuals from each
sub-structure population, the fitness of individuals in a sub-
population can be sorted according to their performance in
the top-level system. Thus, no explicit local fitness measure
for the sub-populations are applied in this approach. How-
ever, a mechanism is provided for initially seeding each GA
population with user-supplied rules. Darwen and Yao have
proposed a co-evolution scheme where the subpopulations
are divided without human intervention [2]. There has been
undertaken work on decomposition of logic functions by
using evolution [7]. Results on evolving a 7-input and 10-
output logic function show that such an approach is benefi-
cial.

Incremental evolution for EHW was first introduced by
Torresen in [14]. This is an approach that uses divide-and-
conquer of the application. It has been shown that dividing
the application is a very promising approach. It was pro-
posed for EHW as a way to incrementally evolve a hard-
ware system. The scheme is calledincreased complexity
evolutionsince the system is evolved by evolving smaller
sub-systems. Increased building block complexity is also a
part of this approach, where the building blocks are becom-
ing more complex as the system complexity increases.

Experiments show that the number of generations re-
quired for evolution by the new method can be substantially
reduced compared to evolving a system directly in one ope-
ration. This has been shown both for a character recogni-
tion problem [15], a road image recognition problem [17]
and prosthetic hand control [18]. In some experiments, bet-
ter classification results than for artificial neural network
were obtained. In addition, the hardware circuit was much
smaller than what would have been required for running a
neural network. Further, circuits for larger problems – than
those evolvable by other schemes, have been evolved [21].

Through the research, the architecture as well as the in-
cremental evolutionary algorithm have been extended and

improved. It has been shown that even though the total num-
ber of generations is less, the performance of the evolved
circuit is substantially better with the proposed scheme [18].
Thus, one achieves to solve complex problems where no
good solution can be found by a single run evolution. More-
over, different ways of conducting the evolution have been
proposed and tested. This includes evolving the best combi-
nation of circuits among a set of alternative circuits [20] and
dynamic fitness functions in evolvable hardware [19]. Thus,
we believe this approach is a good foundation for introduc-
ing morehumanknowledgeinto the design. That is, more
manual design knowledge would be applied in the evolu-
tion. This is the topic for the work presented in this paper.
By including morea priori knowledge, we should be able
to evolve more complex and thus, more useful circuits than
the circuits that have been evolvable so far.

X * Y = Z
00 * 00 = 0000
00 * 01 = 0000
00 * 10 = 0000
00 * 11 = 0000
01 * 00 = 0000
01 * 01 = 0001
01 * 10 = 0010
01 * 11 = 0011
10 * 00 = 0000
10 * 01 = 0010
10 * 10 = 0100
10 * 11 = 0110
11 * 00 = 0000
11 * 01 = 0011
11 * 10 = 0110
11 * 11 = 1001

Table 1. The truth table for multiplying two by
two bits.

To make experiments, this paper reports about the evolu-
tion of multiplier circuits. Table 1 shows an example with
the truth table for a two by two bit multiplier circuit. In the
context of evolving multiplier circuits, the training set con-
sists of all possible permutations of the inputs. Evolving
this circuit in a single run requires a circuit with four inputs
and four outputs.

The next section gives a listing of a priory knowledge
available from traditional design. This is followed by a de-
tailed description of an implemented scheme in Section 3.
Results are reported in Section 4 and finally Section 5 gives
the conclusions of the paper.



2 A priori Knowledge

This section gives an overview of different aspects of de-
sign knowledge. That is, we list those methods which a de-
signer would apply to design a system. A priori hardware
design knowledge is applied in a set of different ways:

• Design specification. Most traditional design is ac-
cording to a predefined detaileddesign specificationof
the system. In evolution of digital circuits, normally
only input-output vectors are specified. Specification
of e.g. timing is rare even though this is often impor-
tant in traditional design.

• Partitioning the design task. This regards how to
best partition a given problem to solve. This design
scheme is also called a hierarchical design scheme. For
normal design, it will be a mixture of top-down and
bottom-up design. A designer would normally start
with preparing a top-level block description and con-
tinue by implementing one sub-circuit of the system
at a time. He would usually know what is a reason-
able partition of the design-task whereas this would
normally not be available for a fully automatic design
of a system. However, this would be quite similar to
design based on increased complexity evolution pre-
sented in the introduction. We start with a complete
data set that is partitioned (top-down). This is followed
by a bottom-up evolution of the system. Thus, a priory
knowledge is put into the top-down design only. An-
other aspect – at lower level, is to emphasize on the
parts (or function) of the system not working. That is,
when evolving a system, the fitness function should be
adaptable to change its behavior according what is still
left to be solved. This would have to be done in such a
way that the parts working do not stop working.

• Reuse.Designing a large circuit would be almost im-
possible if the designer had to design each sub-circuit
from scratch every time it is used [8]. Predesigned
units for evolution could be simple Intellectual Prop-
erty (IPs) cores, custom functional blocks or design
library objects. Further, an interesting aspect is to re-
useevolvedstructures several times in a system. This
could either be about extracting promising parts of a
chromosome [8] or apply evolved units in later evolu-
tion [14].

• Data buses. Almost no digital design is conducted
without the use of data buses, while many systems
are evolved with single bit wires only. To increase
the complexity of a design, data buses would proba-
bly have to be included. Still, single bit lines will be
needed. Thus, an evolvable architecture would have to
consist of both busses and bit lines. This issue is also

related to reuse with applying functional blocks in the
evolution. A scheme for evolution with reuse and data
buses is proposed in the next section.

• Design optimization knowledge. There exists a set
of computer based optimization tools that could be ap-
plied in hardware design. That is, the designer specify
a more or less abstract description of the system which
the tool synthesize an optimized design for. Not much
work has been published on combining evolution and
optimization tools.

• Prototyping. This is very closely related to evolution.
It consists of building various designs – with alterna-
tive architectures, to compare what is best. This is in-
herently what evolution consists of as well.

• Hardware/software co-design. Normally, hardware
is developed in close cooperation with software being
developed. What to implement in hardware and what
to code as software are often an open question in the
initial design phase. In evolution, designs are mainly
either for softwareor hardware.

Not all of these issues are straightforward to combine with
evolution. The one most explored (that probably will be
more explored in the future) seems to be partitioning of the
design task. Another one that probably could be useful is
reuse. This could be at several levels. One of the prob-
lems with fixed length genetic algorithms is that a building
block found in one part of the chromosome could not be
reused in another part [8]. Further, standard crossover (with
random crossover point) is not structure preserving. There
have been introduced algorithms trying to overcome these
problems. However, we feel that reuse should be further in-
vestigated when trying to build complex structures and sys-
tems. The next section describes work involving both reuse
as well as data buses. Thus, this paper focus on a selected
subset of a priori knowledge applied in evolution. In the fu-
ture, the goal is tocombineas much a priori knowledge as
possible together to make advanced evolution.

3 Evolution with Data Buses

In this section, applying evolution on an architecture
with data buses is explored. To demonstrate the scheme,
we have selected a simple multiplier circuit. There has been
work conducted earlier on evolving multipliers [22]. By
applying increased complexity evolution it has been shown
that large multiplier circuits can be evolved [21]. However,
we are not aware of much work including data buses in dig-
ital circuit evolution. By applying this approach, we hope
to improve the target architecture for evolution. Multiplier
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Figure 1. The evolvable architecture based on functional bl ocks and data buses.

circuits are appropriate since a standard design of a multi-
plier would consist of a set of parallel data buses together
with AND gates and adder units (full adders).

E.g. for a 4 by 4 bits multiplier, the computation is as
follows for multiplyingx3x2x1x0 with y3y2y1y0 :

x0y3 x0y2 x0y1 x0y0

x1y3 x1y2 x1y1 x1y0

x2y3 x2y2 x2y1 x2y0

+ x3y3 x3y2 x3y1 x3y0

Selecting appropriate building blocks for the task to
solve is also a part of thereusea priori knowledge. Thus,
we apply the building blocks as shown in Figure 2.
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Figure 2. The building blocks used in evolu-
tion.

The function can be described as follows for the AND unit:

zi = xiyi where i = 1, 2, 3, 4
z5 = 0

The adder is given by:

si = (xi + yi + ci−1) mod2

ci+1 = (xi+yi+ci−1)
2

c = c5







wherei = 1, 2, 3, 4

c0 = 0

Thus, these functional blocks allow us to evolve with 4
bits buses. The architecture, that will be applied for evolv-
ing multipliers, is shown in Figure 1. It consists of a number
of functional units (given in Figure 2) for computation and
output, respectively. A unit can connect to any unit with
a lower id than itself including the inputs. In addition to
inputing the two four bits numbers, constants with “1” and
“0” are input as well. The numbers input are duplicated four
times to make the probability higher for connecting to in-
put numbers rather than other units. This is since a normal
design would have such a higher connectivity to the input
numbers. One output unit is assigned toeachoutput bit.
However, in the future it should be considered if multi-bit
output units are beneficial.

Ordinary designs can not be based on data buses only.
There would also have to be a possibility for single bit lines
in the design. The following connections between units are
possible here:

• Four output bits connected to four input bits.

• A single bit source connected to four inputs.

As seen in Figure 3, during evolution it is allowed to con-
nect either to a 4 bits bus output (A to C in Figure 3) orone
of the lines in the bus (B to C in Figure 3). This corresponds
well with the multiplication operation as seen above. Which
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tween units: Data bus (A to C) and single bit
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type of connection to apply for each input is given by bits
in the chromosome string. Further, which single bit line to
select is determined by bits in the chromosome as well.

The adder unit needsfiveoutput bits. Thus, those units
connecting to the output of such a unit must select either
connecting to the upper or lower four bits. However, to
allow for shift operation in the architecture, thesametwo
connections are also possible to the AND unit. The most
significant output bit (z5) of each AND unit is set to “0”.
The complete chromosome coding for one unit is given in
Table 2. The numbers in parenthesis are the number of bits
used. In total, 19 bits are applied and this results in a chro-
mosome (32-10) x 19 bits = 418 bits long. It is actually
slightly shorter since a unit with a smallid needs less than
5 bits to address units with a smallerid than itself. Evolv-
ing with 4 bits functional blocks provides a more compact
chromosome string than building blocks consisting of gates.
This is due to more complexity is provided by each building
block. Such an architecture allows for connection toall pre-
vious units. This would normally not be possible in a gate
based architecture since this would make the chromosome
string very long.

By looking at the multiplication operation, we extracted
and applied some more a priori knowledge. When a unit
connecting toinput numbers only, the following applies:

• Force one of the two inputs to be bus and the other to
be bit line. For a traditional design of a multiplier (with
two input numbers) there are always a single bit and a
bus together.

• A unit is made to always connect its two inputs to the
two differentnumbers. Thus, it would not be possible
for a unit connecting to the same number twice.

• Forcing the unit to be AND since bits in the input num-
bers first have to be multiplied (AND operation) before
addition can take place.

3.1 A Gate Based Architecture

To be able to compare the results with gate level evolu-
tion, we have also run experiments with a gate array based
architecture (similar to the one applied in [21]). The target
hardware consists of a fixed-size array of logic gates. The
array consists ofn gate layers from input to output as seen in
Figure 4. Each logic gate (LG) is eitherBuffer, AND, XOR
orMUX gate. Each gate’s three inputs in layerl is connected
to the outputs of three gates in layerl − 1. In the following
experiments, the array consists of 8 layers each consisting
of 16 gates. A 4×4-bit multiplier consists of 8 inputs and 8
outputs. Inverted versions of the inputs are input as well.
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Figure 4. The architecture of the gate array.

The functionof each gate and itsthree inputsare deter-
mined by evolution. The encoding of each logic gate in the
chromosome string is as follows:

Input 1 (4) Input 2 (4) Input 3 (4) Function (2)

For the given array, the chromosome string length becomes
1792 bits long.

3.2 GA Parameters and Fitness Function

Various experiments were undertaken to find appropriate
GA parameters. The ones that seemed to give the best re-
sults were selected and fixed for all the experiments. This
was necessary due to the large number of experiments that
would have been required if GA parameters should be able
vary through all the experiments. The preliminary experi-
ments indicated that the parameter setting was not a major
critical issue.

The simple GA style – given by Goldberg [3], was ap-
plied for the evolution with a population size of 50. For
each new generation an entirely new population of individ-
uals is generated. Elitism is used, thus, the best individuals



Function (1) Input 1/2 (2x5) Bus or bit (2x1) Which bit in bus (2x2) High or low outp (2x1)

Table 2. The chromosome representation for one unit in the ar chitecture in Figure 1.

from each generation are carried over to the next generation.
The (single point) crossover rate is 0.8 (0.5 for the gate ar-
ray), thus the cloning rate is 0.2. Roulette wheel selection
scheme is applied. The mutation rate – the probability of
bit inversion for each bit in the binary chromosome string,
is 0.01 (0.005 for the gate array). Each experiment has been
run five times, each for 50,000 generations.

The fitness function is computed in the following way:

F =
∑

vec

∑

outp
x wherex =







0 if y 6= d

1 if y = d = 0
3 if y = d = 1

For each output, the computed outputy is compared to the
targetd. If these equal and the value is equal to zero then 1
is added to the fitness function. On the other hand, if they
equal and the value is equal to one, 3 is added. In this way,
an emphasize is given to the outputs being one (which is less
number than those being 0). This has shown to be important
for getting faster evolution of well performing circuits. The
function sum these values for the outputs (outp) of all the
truth table vectors (vec).

The proposed architecture fits into most FPGAs (Field
Programmable Gate Arrays). The evolution is undertaken
off-line using software simulation. However, since no feed-
back connections are used and the number of gates between
the input and output is limited, the real performance should
equal the simulation. Any spikes could be removed using
registers in the circuit. The number of gates used in the
architectures is not considered since todays FPGAs contain
a large number of gates.

4 Results

In this section, results from a set of experiments are in-
cluded. Three different multipliers have been evolved: 2x4-
bit, 3x4-bit and 4x4-bit. They were evolved both with a
traditional gate array (as described in Section 3.1) and the
new proposed data bus architecture (first part of Section 3).
For every multiplier, the results were best when applying
the data bus based architecture, as seen in Figure 5. The
performance is given as percentage of the maximum fitness.

Table 3 summarizes the main results. The average fit-
ness is 5-7% higher for the data bus architecture. Further,
the minimumvalue for the data bus architecture is always
larger than themaximumvalue for the gate array architec-
ture. As can be seen however, it was not possible to evolve
correctly working multiplier circuits. This is both due to
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evolving three different multiplier circuits.

the complexity of the problem as well as the fact that the
experiments that have been run are limited.
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Figure 6 plots the fitness throughout evolution of the
best and worst performing circuit (each selected among five
runs) of the 4x4-bit multiplier. All the time, the data bus
based architecture performs better than the gate array.

Even though it was not possible to obtain a fully working
multiplier circuit, we regard the results as an important step
in the right direction. The results indicate an improvement
compared to evolving with gates as building blocks. If more
time had been available, to run the experiments for a larger



Multiplier Type of arch. # vectors # outputs % of max fitness
Min Max Avr

2x4 bit Gate 64 6 87.4 89.4 88.0
2x4 bit Data bus 64 6 94.3 96.5 95.4
3x4 bit Gate 128 7 78.9 82.1 80.7
3x4 bit Data bus 128 7 84.8 87.3 85.7
4x4 bit Gate 256 8 72.8 79.1 76.4
4x4 bit Data bus 256 8 79.8 84.7 82.1

Table 3. The performance of multiplier circuits of size 2x4- bit, 3x4-bit and 4x4-bit.

number of generations, it is expected that the performance
could have been further improved. Moreover, by combining
the scheme proposed in this paper with earlier methods like
incremental evolution, advanced systems should be evolv-
able. This a part the future work.

5 Conclusions

In this paper, a number of traditional design aspects have
been discussed. Further, experiments involvingreuseand
data busesin evolution of multiplier circuits have been re-
ported. Experiments are promising and by further devel-
oping the architecture and the a priory knowledge inclu-
sion, systems for complex real-world applications should
be evolvable.
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