Evolvable Hardware — The Coming Hardware
Design Method?

Jim Torresen
NERA Telecommunications, P.O. Box 91, N-1361 Billingstad,
NORWAY

E-mail: jim@nera.no

Abstract. This paper introduces a new hardware design scheme in-
spired by biological systems. The method is named Evolvable Hard-
ware (EHW), since evolutionary algorithms are applied for the cir-
cuit design. The idea is that the system should consist of a large
set of simple hardware units with connections only to their nearest
neighbors. All the units operate concurrently with no global control.
However, the local behavior of the complete system determines the
global behavior of the system. The connections between the units and
the operation of each individual unit are determined using genetic
algorithms. Thus, the system is evolved until it attains a structure
performing as initially specified.

This paper surveys the undertaken work on EHW. So far few ex-
periments have been reported. One of the reasons to this is that
little applicable hardware has been available. The experiments which
have been reported are on simple problems. However, the results are
promising and many have great expectations on the future of EHW.

1 Introduction

The traditional way of designing hardware has been by drawing schematics or
by using a hardware description language. This involves many design consid-
erations to be taken care of like timing constraints and possible glitches. An-
other possible approach is by evolving the circuit description. By this method,
first a set of circuits are randomly generated. The behavior of each circuit is
evaluated and the best circuits are combined to generate new and hopefully
even better circuits. The evaluation is according to a behavior initially spec-
ified by the user. After a sufficient number of generations the fittest circuit
is to behave according to the initial specification.

Natural evolution is based on Darwin’s thinking about development where
strong individuals survive and give rise to new generations. In relation to
evolution, undertaken in a large population, we speak about collective be-
havior arising from simple interaction between individuals. One example of
collective behavior is an ant society, where the global behavior emerges from
local interactions between individual ants. These principles from the nature



inspire researchers to develop new architectures where the configuration is
determined by evolution and with no global control of each building block.
This in contrast to the general computers used today which are all based on
global control mechanisms.

An artificial evolvable system may exhibit several behavior characteristics
of natural living systems:

— Emergent behavior: Interaction between a large number of units with no
global control determines the behavior of the entire system.

— Adaptation to the environment.
— Self-replication.
— Self-reparation.

Evolvable systems may solve these items better than today’s systems. An-
other word that is used for this research field is Artificial Life, since biological
systems are tried to be modeled in a computer.

Evolvable hardware (EHW) is programmable hardware that can be evolved.
The idea of EHW was first introduced for about four years ago [5]. Little has
happened through the years since then, thus, it is still quite open how evolv-
able hardware — if any, will be in the future. EHW is based on evolving
the circuit configuration instead of designing it the ordinary way. That is,
different randomly generated configurations are tested in a programmable
hardware device. The configurations that make the device output responses
closest to the wanted response are combined to make even better configura-
tions until an usable device is achieved. There has so far been a couple of
conferences on evolvable hardware, see [7] and [13]. A short introduction to
evolvable hardware is given in [8] and [17].

The word evolution is also used in several other contexts, e.g. how hard-
ware has developed. IBM-PC has evolved throughout the years where each
type of 80x86 processor represents one generation. In this paper, this interpre-
tation of evolvable hardware has been completely omitted. Further, note the
difference between programming an ordinary microprocessor and program-
ming hardware. The former is based on specifying a set of instructions on
fixed hardware, while the latter is based on designing the hardware structure
from e.g. gate level. Programmable hardware is often called reconfigurable
hardware.

The evolution can also be undertaken completely in software. Today, soft-
ware simulation is by far the most used method, since little EHW has been
available.

A large range of applications have been proposed for EHW:

— Autonomous robots:

e Vacuum cleaners



e Surveillance robots
e Automatic De-mining Vehicles
e Maintenance robots

— Pattern recognition

— Signal processing

One hopes that EHW can solve the difficult problems in these applica-
tions better than other methods like ordinary artificial neural networks. Au-
tonomous robots require such complex systems that it has not yet been possi-
ble to develop functional systems. By evolving a system instead of designing
or programming it, the complexity can be highly increased. To use such a
system in real time, special hardware is required.

Evolvable hardware has several advantages:

— Fault tolerant: The system can change its own structure in the case of
hardware error.

— The designers abstraction like the synchronous digital model can be aban-
doned and the dynamics of the reconfigurable hardware can be fully ex-
ploited. By trial and error through evolution, a design that performs as
specified is found. The knowledge about how the device is internally con-
figured is not required by the user.

— The principle of local interaction instead of global control leads to un-
limited scaleability of the system.

— If some objective fitness function can be derived for any complex system,
there is a possibility of automatic evolution of the system without explicit
design.

The last item in the list is one of the main motivations for the EHW re-
search. Both circuit speed and complexity increases and a limit for designabil-
ity in the ordinary way may soon arise. Then, other ways of programming
like hardware evolution must be investigated.

For hardware evolution to be an applicable design method it must give
a better solution — and preferably be faster, compared to software simula-
tions. Furthermore, it is essential to create an evolutionary framework and/or
computational mechanisms to guide hardware evolution to fully utilize the
hardware device. The design tool must be designed to in the best way utilizing
the EHW. Implementation of artificial evolution schemes must be developed
such that it is inspired by nature, but suited to the facilities available. The
differences between biological systems and the available technology must be
accepted. It should be emphasized how the technology can be best utilized in-
stead of copying the biological system. Biological neural networks are highly
connected in 3D but slow, while VLSI is fast but with limited connectivity.



1.1 Genetic Algorithms

Genetic Algorithms (GA) are the most commonly used algorithms for evolu-
tionary computing [9]. The algorithm is illustrated in Figure 1.

Initial
Random
Population

N

Mutations

e
Evaluate
Breed
3 1 3 8
4 8 ) 4 6 Breed
6 2 5
54a 5 Select 5
1 ) Die

Fig. 1. The genetic algorithm principle.

In GA, the members of a population are initially randomly generated. A
member of the population may contain a program, hardware configuration or
other kinds of representation and is often called a chromosome or a genotype.
The members are evaluated and sorted on fitness according to a given fitness
criteria. This is usually a high-level function and may be e.g. the deviation
from a specified behavior of a robot. The parameters of chromosomes of
the fittest members are exchanged to generate — for each couple, two new
offsprings — preferably fitter than the parents, in the next generation. In the
figure, no parents are transferred to the next generation. Another variant of
GA combines a few of the best members, and the children are exchanged
with the lesser fit members of the population. Mutation may also occur and
introduces changes in the chromosomes that may not be in the parents.

Evaluation of each member is usually the most time consuming operation



of GA and is the one first to be undertaken in special hardware. GA was
initially used for optimizing problems. Later it has also been applied for
adaptive systems for robot control.

1.2 Methods in Evolvable Hardware
Hardware evolution can be divided into two sub-groups:

— Off-line EHW: The evolution is simulated in software, and only the
elite chromosome is written to the hardware device (off-chip evolution).

— On-line EHW: The hardware device gets configured for each chromo-
some for each generation (on-chip evolution). Thus, the genetic operations
are done in software, while evolvable hardware is used to test the fitness
of each member of the population.

In the future, one may design devices which allow the complete evolution
on-chip. Then, it is possible to continue the evolution when the device is oper-
ating in its working environment. However, in today’s systems the evolution
is undertaken once with no continued evolution while the device is in use.

So far, all systems are based on one or a few circuits. In the future the
systems can become more complex, where sub-systems are separately evolved
and then put together to a larger system. For hardware evolution, building
blocks are required and so far gate level (AND,OR,..) is most commonly used,
while higher level functions are possible too.

1.3 Technology for EHW
Possible evolvable medium:

— Wetware: Real chemical compounds are used as building blocks.
— Nanotechnology: Molecular scale engineering.

— Silicon hardware:
e Field Programmable Gate Arrays (FPGA)

e Custom Application Specific Integrated Circuit (Custom ASIC)
e Wafer-Scale Integration

— General purpose computer

Much research is going on in the fields of wetware and nanotechnology. How-
ever, with few results so far. The most available technology for EHW today
is probably FPGA devices. This is programmable chips, where a string of
configuration bits determines the internal circuit and behavior of the device.
It will be detailed later in this paper.

ASIC is user-specified circuits specially designed for evolution. If the sys-
tem is to be scaleable to evolve a large network of units, software simulations
on a general purpose computer is not an alternative.



2 A survey of EHW Research

This following sections contain a survey of various approaches to evolvable
hardware. Most of the research on evolutionary techniques are undertaken
using program simulations. It is to be expected that some of these approaches
will be implemented in special purpose hardware in the future. Thus, as
an introduction, some of the most used evolutionary programming methods
will be shortly described. Then, the experiments using hardware evolution is
presented.

2.1 Evolution in Software

The main research projects where no special hardware is used:

— Lindenmayer-systems (L-systems): A rewriting technique for defining
complex objects by successively replacing parts of a simple initial object
(mainly used in computer graphics to generate plants).

— Tierra. Evolution and optimization of self-replicable computer programs,
T. Ray.

— Genetic Programming. Computer programs are genetically bred to
solve problems, J. Koza.

— Sub-sumption architecture, Control of autonomous mobile robots
based on layers of simple finite state machines, R.A. Brooks, J. Koza.

— Cellular Automata. J. von Neumann, E.F. Codd, H. Garis.

— Simple artifacts. A computational modeling method for adaptive self-
organization, J. Vario.

The difference between Tierra and Genetic Programming is that the latter
is used to solve a specific problem, while the first is used to study aspects of
artificial evolution in general.

Cellular Automata (CA) originates back to the 1960’s when John von
Neumann' proposed a self reproducing machine based on simple CA cells.
The purpose was to design a machine to cope with the problems of extremely
large machines. The machine characteristics were:

— Self-reproduction
— A grid of cells each residing a finite state machine.
— Each cell can only be affected by its four nearest neighbors.

! John von Neumann is the originator of the architecture employed today in almost
all general purpose computers.



The proposed machine showed to be too complex to be designed. However,
the principles were continued by Codd who introduced a simplified Cellular
Automata Machine [1]. The system consists of a large number of CA cells.
Each cell can be in a one of a set of states. The cell changes states in a
synchronous way based on its own state and the state of its neighbors — see
Figure 2.

Top

Left | Center Right

Bottom

Fig. 2. A CA cell with its four nearest neighbors.

The machine proposed by Codd is the basement for several research
projects going on at the moment where the goal is to evolve complex sys-
tems based on CA cells. One of these project, going on in Japan, is named
the CAM-BRAIN project. Its purpose is to design a “brain” containing bil-
lions of artificial neurons based on CA cells [2].

Networks are grown and evaluated at electronic speed in a Cellular Au-
tomata Machine (CAM-8). This is a machine designed for various CA simu-
lation and is used for e.g. gas simulations.

The networks are artificial neural networks based on CA cells. After a
population of networks has been grown they are evolved by using genetic
algorithms. The hope is to successfully evolve systems which function as de-
sired, but which are too complex to be designable. One example of such a
system is an autonomous cleaning robot. So far it as been shown that net-
works can been grown in both 2D and 3D. The 2D model has been evolved to
output a sine wave of a desired arbitrary period and amplitude. Furthermore,
a simple line detector has been evolved, which outputs the vector velocity of
a line moved across an array of “detector” neurons. The future will show if
it is possible to evolve systems applicable to real world applications.

2.2 Hardware Evolution

There is a limited number of projects where evolutionary hardware has been
part of the evolutionary process. The various projects are quite different from
each other and they have got few common properties. The main research
projects are:



— Neuromorphs, [12].

— Analog network synthesis, [3, 10].

Embryonics [11].
— Firefly machine [14].

— Evolving a simple robot controller, [16].

Evolution by Hardware Description Language (HDL), [4].
— On-line FPGA evolution, [15].

Evolvable ASIC device, [6].

These project can classified as based on EHW. They will be described be-
low, emphasizing on which parts of the evolution are undertaken in the target
hardware. The first two projects in the above list is based on evolution using
analog technology, while the latter six projects are using digital hardware.

2.3 Analog Devices

This section contains a description of various evolutionary approaches based
on analog technology. All work done so far use ofl-line EHW. This is due
to the overhead required for designing the circuit. However, recently analog
programmable Field-Programmable Analog Arrays (FPAA) were introduced
from several companies. These should make analog on-line evolution possible.

Neuromorphic Systems. Neuromorphic systems are analog VLSI circuits
and systems that mimic the nonlinear and spatiotemporal sensory processing
capabilities inherent in dendrite tree [12]. Thus, biological neural networks are
tried implemented in silicon. Dendrite trees are built using analog components
like capacitors and programmable resistors.

Genetic Algorithms have been used to find a set of parameters that pro-
duce the sought behavior. The longer a signal propagates along a dendrite
branch the more an input signal is attenuated. Only input spikes are used
evolve the system and circuits have not been tested on real world applications.

Analog Circuit Synthesis. Automatic analog network synthesis using ge-
netic algorithms has been proposed by several researchers [3, 10]. Koza et
al. generate circuits by using a modified SPICE simulator for measuring fit-
ness of each individual. They apply Koza’s proposed genetic programming
approach, i.e. the population consists of computer programs of varying sizes
and shapes. They have successfully evolved a low pass filter and an Op Amp.
Grimbleby generates analog circuits using the ordinary genetic algorithm.



Analog Programmable Devices. As mentioned in the introduction of this
section several programmable analog devices have recently been introduced.
No experiments using these in evolutionary design schemes are yet reported.
The following list includes FPA As offered by commercial companies:

— IMP Inc. Three devices are available: 50E10, 50E20 and 50E30 each with
different analog components inside. The 50E30 contains field-programmable
gain and function amplifier. Operation frequency is limited to 100 kHz.

— Motorola. MPAAx020 FPAA is just released and is originally a product
Pilkington Microelectronics. It consists of 20 configurable analog blocks
with the signal frequency limited to 200 kHz.

— Zetex Semiconductors Ltd. Trac is an FPAA containing 20 configurable
analog blocks, each of which can accomplish the following functions: Add,
Negate, Pass, Log, Antilog, Rectify, Aur and Off.

2.4 Digital Approaches to Evolvable Hardware

Programmable semiconductor devices have existed for a fairly long time. One
of the first chips was the Programmable Array Logic (PAL). PALS are mainly
limited to implement a few logic expressions and a state machine. Moreover,
to program a PAL a special programming device is required and the PAL
device is not erasable.

About ten years ago the more complex Field Programmable Gate Arrays
(FPGAs) were introduced. They consist of a much larger number of gates
compared to the PALs and are reprogrammable. A string of configuration bits
is downloaded to the FPGA and it determines the connections and functions
of the internal gates and thus the operation of the device. The configuration
bit string makes the device easily reconfigurable.

However, earlier programmable devices were of limited use as EHW due
to several problems:

Limitation in number of possible re-programming operations.
— Possibility of damaging the device by an in-valid configuration.

— Long down-loading time for the configuration.

Inhibition of partial downloading of the configuration string.
— Slow speed of operation.
— High cost.

These limitations have severely limited the interest in evolvable hardware
research. However, recently new devices have been introduced were these



problems are reduced. The complexity and speed is increasing and the price
per gate is descreasing.

The problem of long downloading time for an FPGA configuration is
partly because of the inhibition of partial downloading. Recently however, a
new device — XC6200, from Xilinx were announced. This device is partial
programmable, i.e. each cell configuration can be individually programmed
(ns — ps). This makes mutation-operations simple to implement. Further,
the speed is high with 220 MHz flip-flop toggle rate. Figure 3 depicts the
architecture of XC6200.

The cells communicate to their nearest neighbors and each cell is of simple
nature. Both an advantage for evolution. Any configuration string may be
downloaded to the device without risk of damaging the device. However,
the configuration must be down-loaded into the device, thus, a cell can not
reconfigure itself.

Atmel has got a similar device — AT6000, which is also partial pro-
grammable. However, there is the limitation that the configuration string
has to be a valid one to not damage the device.

In the following sections, the various research projects based on evolvable
hardware are described. All the projects apply FPGAs as evolvable hardware.

Embryonics. Embryonics are proposed to be specially designed FPGAs.
They behave like biological cell groups, with ability to reproduce, differentiate
and self repair [11]:

1. Reproduction phase: One cell reproduces itself by duplicating the de-
scription of the complete system located in its chromosome. This is is
carried out until the full system is populated with cells.

2. Specialization phase: Each cell interprets one piece of the chromosome
depending on the location in the system.

The computer architecture embryonics are inspired by processes in molecular
biology. There are several problems, e.g. a large storage is required to keep
the complete chromosome in each cell.

No special FPGAs have been produces so far, but commercial devices
have been used to validate the different steps in the scheme, using a prototype
design named biodule.

The Firefly Machine. An evolving, one-dimensional, nonuniform cellular
machine has been implemented [14]. It is based on several XC6200 devices on
a single board. The system consists of 56 binary-state cells, each containing a
rule table. The evolution is completely on-line, i.e. also the genetic operations
are carried out on the board. The system is evolving a configuration where
the state of each cell oscillate between all zeros and all ones on successive
steps. Thus, it behaves like a swarm of fireflies — flashing on and off in an
unison way.



NEWF W<

F N— ]
]S5 o> K
SEWF F J ‘

Fig. 3. The XC6200 FPGA architecture consisting of an array of cells. The
units on the border of the device are inputs and outputs to the chip.



Evolution by HDL. A Hardware Description Language (HDL) is a pro-
gramming language and a hardware design tool. A system is proposed where
HDL programs are evolved to generate hardware structures and behavior [4].
The HDL language is defined by a rewriting system — i.e. grammar, similar
to other programming languages like C. The HDL circuit description can be
drawn like a tree where the leaf nodes represent the hardware units with the
tree representing the connections between them.

Evolution is based on Genetic Algorithms. The chromosome of the sys-
tem is represented by the rewriting system, where the terminal symbols are
HDL building blocks. Genetic operations like crossover and mutation are per-
formed on the tree-structured design. From a chromosome a program/HW
configuration can be generated deterministically. The target architecture for
an evolved circuit is an FPGA.

The approach has been successfully used to evolve a binary adder per-
forming summation free of error after 251 generations. Only off-line evolution
is used.

On-line Evolution of FPGAs. Evolving an FPGA on-line usually contains
the following;

— An evolutionary algorithm operates on a population of configuration bit
strings, each of which determines the architecture of the FPGA.

— The behavior is evaluated by down-loading one configuration into the
FPGA at a time and generating a fitness score.

The initial configuration strings may contain random values. After evolu-
tion the goal is to have a configuration string making the FPGA to perform
as the user has specified. Since the fitness is measured by downloading each
bit string to the FPGA this approach is classified as on-line EHW.

A few experiments have been conducted with evolving FPGAs and the
first based on on-chip evolution was conducted by Thompson [16]. He refrains
from the digital aspects of a XC6200 FPGA and treats it like an analog, dy-
namic and asynchronous device. The evolution is allowed to explore the chip
without concern about normal design restrictions like switching transients
and clock delay. The chromosome was defined by 100 gates and their input
connections. Thus, this is gate level evolution. No flip-flops were used in the
evolution.

The purpose of the first experiment was to evolve an oscillator without
external signal input. One of the things to be investigated was to see if it was
possible to evolve an oscillator of fast logic gates to generate a relatively low
output frequency. This showed to be possible with fairly high precision and
oscillators with frequencies of 10 Hz and 1 kHz were evolved. Thus, it was
shown that it is possible to learn a device to do something useful by allowing
the hardware to freely evolve without the ordinary restrictions a designer
would have used.



In a later experiment, Thompson has evolved a tone-discriminator in the
XC6216 FPGA [15]. A 10 x 10 corner of the FPGA were used and the con-
figuration was evolved to discriminate between square waves of 1 kHz and 10
kHz presented at the single input. The single output should go to +5V for
one frequency and OV for the other. The population of size 50 and evolution
started by an initial random strings of 1800 bits. The final circuit appeared
to be perfect when observed by eye on an oscilloscope. It was the result of
evolving 5000 generation. There were initially some unwanted spikes in the
output, but these were eliminated around generation 4100.

Functional Level Evolution. If hardware is genetically synthesized from
higher level hardware functions — higher than gate level, more complex ap-
plications can be evolved [6]. The basis for the work undertaken by Higuchi
is earlier EHW gate level experiments using a GAL chip. This is a device
similar to a PAL, but it is erasable. It was used in a system evolved to do
simple pattern recognition.

Thus to conduct experiments on functional-level evolution, a new FPGA
model — F?PGA, is proposed by Higuchi and shown in Figure 4.

External T,
Input
Ll
PFU InEEn PFU
— | [
PFU T PFU
[EEY 5
F“PGA
PFU PFU Output
F2PGA
Input 1 |
PFU {111+ PFU
PFU ] PFU
—
Lg— —> External
— Output
Memory Unit

Architecture Bit Registers

Fig. 4. Function based FPGA.



It consists of a number of Programmable Floating Units (PFUs) intercon-
nected by crossbar switches. The function of the device is dependent on the
PFU’s function and the crossbar switch settings, which are represented in the
chromosome. The length of the chromosome is variable to obtain faster GA
execution and allow for large scale evolution. The Memory unit stores the
“state” of the system. The Architecture Bit Registers store the configuration
bits for the F?PGA. Each PFU can perform functions like adding, subtract-
ing, multiplication, cosine and sine using floating point numbers. Thus, each
PFU includes a floating point ALU and a floating point multiplier. Each
PFU attains comparable performance to a DSP. Trigonometric functions are
implemented with ROM tables.

The GA operations are selection and mutation, and no crossover is used.
After the fittest chromosomes have been selected they all undergoes mutation.
This may be:

1. Mutation of the operand — i.e. mutation of a crossbar setting.
2. Mutation of a function — i.e. the operation of a PFU is mutated.

The proposed scheme will be tested by a newly designed ASIC. This will
be one of the few devices specially designed for evolution. Simulations have
been conducted and indicates performance equal to artificial neural networks.

3 Discussion

Evolvable hardware is a young research field with few experiments on real
applications. Furthermore, the number of researchers who have undertaken
experiments using evolvable hardware is small. However, the founding of sev-
eral conferences on the topic should lead to more widespread interest. The
results so far of applying evolvable techniques are promising. The next ob-
vious step seems to be testing them on real applications. This will probably
require larger scale systems.

The commercial vendor refrain from saying too much about their future
devices. However, programmable devices will exist in the future and probably
with more gates per chips than today. Thus, this invites researchers to exper-
iment with new design schemes like evolution. So far it seems that FPGAs
are the most promising technology for evolution. Later nanotechnology will
be introduced and allow for larger scale designs.

It seems like most researchers in the field of evolvable systems are using
software simulation, while it is probably the development in hardware that
will determine how large the progress will be.



4

Conclusions

Research on evolvable hardware can be summarized in the following conclu-
sions:

— Evolvable hardware is proposed to be a method for designing complex

systems.

— Several different evolutionary methods are proposed and under develop-

ment at the time being.

— Few experiments involving on-chip evolution have been undertaken.

— Both evolutionary techniques and evolvable hardware circuits have to be

further improved to be used for complex real world applications.

Today the achievements are few and the small number of experiments

undertaken by EHW show that it is still a way to go before we have an evolved

vacuum cleaner moving around in our homes doing the cleaning while we are
at work.

References

N —

E. F. Codd. Cellular Automata. Academic Press, New York, 1968.

H. de Garis. Cam-brain project: The evolution of a billion neuron artificial
brain by 2001. In E. Sanchez and M. Tomassini, editors, Towards Fvolvable
Hardware: The evolutionary Engineering Approach”. Springer-Verlag, 1996.
Lecture Notes in Computer Science, vol. 1062.

J. B. Grimbleby. Automatic analogue network synthesis using genetic algo-
rithms. In Proc. of the 1st IEE/IEEE Int. Conf. on Genetic Algorithms in
Engineering Systems: Innovations and Applications (GALESIA95), pages 53—
58 IEE Conf. Publ. No. 414, 1995.

Hitoshi Hemmi et al. Development and evolution of hardware behaviors. In
R. Brooks and P. Maes, editors, Artificial Life IV, pages 371-376. MIT Press,
1994.

T. Higuchi et al. Evolvable hardware : a first step towards building a darwin
machine. In Proc. of the 2nd Intl. Conf. on Simulated Adaptive Behaviour,
pages 417-424. MI'T Press, 1993.

T. Higuchi et al. Evolvable hardware with genetic learning. In Proc. of IEEE
Int. Symp on Circuits and Systems (ISCAS96). Atlanta, 1996.

T. Higuchi and others (eds.). Fvolvable Systems: From Biology to Hardware.
First Int. Conf., ICES 96. Springer-Verlag, 1997. Lecture Notes in Computer
Science, vol. 1259.

A. J. Hirst. Notes on the evolution of adaptive hardware. In Proc. of the
2nd Int. Conf. on Adaptive Computing in Engineering Design and Control
(ACEDC96). University of Plymouth UK, 1996.

. J. H. Holland. Adaption in Natural and Artificial Systems. The University of

Michigan Press, 1975. Ann Arbor, Michigan.



10. J. R. Koza. Automated design of both the topology and sizing of analog electri-
cal circuits using genetic programming. In J. S. Gero and F. Sudweeks, editors,
Artificial Intelligence in Design '96. Dordrecht: Kluwer Academic Publishers,
1996.

11. P. Marchal et al. Embryological development on silicon. In R. Brooks and
P. Maes, editors, Artificial Life IV, pages 371-376. MIT Press, 1994.

12. D. P. M. Northmore and J. G. Elias. Evolving synaptic connections for a sil-
icon neuromorph. In Proceedings of the IEEE Conference on Fvolutionary
Computation, Orlando, volume 2, pages 753—758, 1994.

13. E. Sanchez and M. Tomassini (eds.). Towards Fvolvable Hardware: The evolu-
tionary FEngineering Approach. Springer-Verlag, 1996. Lecture Notes in Com-
puter Science, vol. 1062.

14. M. Sipper. Ewvolution of Parallel Cellular Machines: The Cellular Programming
Approach. Springer-Verlag, 1997. Lecture Notes in Computer Science, vol.
1194.

15. A. Thompson. An evolved circuit, intrinsic in silicon, entwined with physics. In
E. Sanchez and M. Tomassini, editors, Towards Fvolvable Hardware: The evo-
lutionary Engineering Approach, pages 136—165. Springer-Verlag, 1996. Lecture
Notes in Computer Science, vol. 1062.

16. A. Thompson. Silicon evolution. In Proc. of Genetic Programming 1996, 1996.

17. J. Torresen. FEvolvable hardware — A short introduction. In Proc. of Inter-
national Conference On Neural Information Processing (ICONIP’97, Dunedin,
New Zealand). Springer-Verlag, 1997.

This article was processed using the KIEX macro package with LLNCS style



