Exploiting Stateful Inspection of Network
Security in Reconfigurable Hardware

Shaomeng Li, Jim Tgrresen, Oddvar Sgrasen

Department of Informatics
University of Oslo
N-0316 Oslo, Norway
{shaomenl, jimtoer, oddvar}@ifi.uio.no

Abstract. One of the most important areas of a network intrusion de-
tection system (NIDS), stateful inspection, is described in this paper. We
present a novel reconfigurable hardware architecture implementing TCP
stateful inspection used in NIDS. This is to achieve a more efficient and
faster network intrusion detection system as todays’ NIDSs show ineffi-
ciency and even fail to perform while encountering the faster Internet.
The performance of the NIDS described is expected to obtain a throughput
of 3.0 Gbps.

1 Introduction

“Stateful inspection” is applied in Network Intrusion Detection Systems (NIDS)
and is a more advanced network security tool than firewalls. It is used for check-
ing the handshakes in a communication session by using detailed knowledge of
the rules of the communication protocol. This is to make sure that it is completed
in an expected and timely fashion. By checking a connection (packet by packet)
— not just one single packet, and knowing what has just happened and what
should happen next, stateful inspection detects incorrect or suspicious activity
and alerts flags to the system administrator [1].

1.1 TCP connection stateful inspection

TCP (Transmission Control Protocol) [2] is an important Internet protocol. It
provides a full duplex reliable stream connection between two end points in the
TCP/IP network. The approach of using stateful inspection will be one of the
best ways (maybe the only way) to monitor a TCP connection.

1.2 Snort — one Network Intrusion Detection System

In NIDS Snort, a software based STREAM4 preprocessor with 3000 lines soft-
ware code is designed to conduct the TCP stateful inspection performing two
functions: Stateful inspection sessions (monitoring handshakes) and TCP stream
reassembly (collecting together packets belonging to one TCP connection). Test-
ing Snort on various networks has shown that the STREAM4 preprocessor leads
to a bottleneck in Snort for some network traffic environments (details can be
found in [3]). Thus, to improve the performance of Snort, we would like to ex-
plore how reconfigurable hardware might be used to replace the STREAM4 TCP
stateful inspection.

2 Exploiting New Implementation Methods for TCP
Stateful Inspection

The new approach would be to process the stateful inspection in hardware rather
than software as usual. Implementation in Field Programmable Gate Arrays
(FPGAs) is appropriate to make such explorations. The new hardware architec-
ture is proposed in Fig. 1. This unit will be an add-on unit for the computer
running the Snort software. Incoming packet data (32 bit width) is input to the

32 bits width flag_vulnerability
packet packet header

TCP connection state
establish

Clock
e

pipelining

c/s|division
Reset
D Server packet

BlockM

packet payload

— DO
Server TCP stream reassembly [Tracking

addr
DI

Detection Engine
Client packet g

. BlockM

Client TCP stream reassembly ~ =— Tracking

addr
H DI

DO

Fig. 1. Block diagram of reconfigurable hardware on TCP connection.

reconfigurable hardware unit which processes the TCP three way handshake and
the Server and Client TCP stream reassembly. The information of the packet
header will be stored in some registers based on the libpcap library which is used
in Snort to get a packet off from the wires.! The basic packet header informa-
tion most frequently referenced are the sequence number, acknowledge number,
window size and TCP flags such as the SYN and ACK bit.

The TCP connection state unit is implemented as a state machine to check
the three way handshake of the TCP connection. After establishing the proper
connection (by TCP three way handshake), the data over a TCP connection
can be exchanged between the Client and the Server. The processing of data
flowing to the Server side and the Client side can be performed separately and in
parallel, even if the Server and the Client TCP stream reassembly units conduct
the same function. This means that packets sent to the Server and the Client side
are reconstructed individually in independent hardware units. By doing this, the
processing of TCP stream reassembly units in a NIDS is accelerated, of course,
at a cost of extra FPGA resources.

Two 32 bit DMUXs (one for header and one for payload) are added to sep-
arate incoming packets into the Server and the Client packets. The reason for
doing this is to feed incoming packets into the Server TCP stream reassembly

! Registers for the packet header are not shown in Fig.1.

unit and the Client TCP stream reassembly unit, respectively. The TCP stream
reassembly units are running in parallel and determine which packets need to
be stored in the “Client packet”or the “Server packet” memory. This avoids the
need for large TCP stream reassembly buffers.

Two 32 bit comparators and one 32 bit adder are needed to implement one
TCP stream reassembly unit. If the sequence number of an incoming packet is
outside of the band size (band size is decided by the initial sequence number
(ISN) and window number), the packet will be dropped. The payload of the
packet is otherwise stored into the “Server packet” memory or “Client packet”
memory respectively, to reconstruct the data for a succeeding detection engine.
By pipelining the TCP stream reassembly, the “Server packet” memory and the
“Client packet” memory unit, the total performance can be enhanced.

The size of the packet memories are 5x32 bit (16 bit data bus). 5x32 bit is
required as the signature pattern can be matched at a maximum of 5x32 bits in
the succeeding detection engine [4]. However, a dual port (write/read) memory
is required for the Server/Client packet units with minimum size of 5x32 bits.
Using a dual port RAM for the packet memory is important to be able to receive
new data when matching (reading) is concurrently undertaken.

Virtex XCV1000-6 FPGA to be used in this work contains RAM blocks
called SelectRAMs. Each has a capacity of full synchronous dual ported 4096-
bit memory and is ideal to implement the Server/Client packet unit. One such
block SelectRAM can be configured as a memory with different data widths
and depths. However, since dual port RAM is required, the maximum data
width is limited to 16 bits. The library primitives, the RAMB4-S16-516 is dual
ported where each port has a width of 16 bits and a depth of 256 bits which
is available in the XCV1000-6. By considering the size of the RAMB4-516-516
and the packet which has 32 bit data width, two such block SelectRAMs are
therefore needed to implement one 32 bit data bus packet memory — see Fig.2.
Since there are two packet memories (the Client and the Server), a total of
four block SelectRAMs are therefore needed to implement the “Server packet”
and the “Client packet” memory units. Processing the data flow on the Server

CLOCK RAMB4_S16_S16 RAMBA4_S16_S16

RESET T |WEA —|WEA
——{ENA ——{ENA
———RSTA ——RSTA READ
—CLKA —CLKA ket[31:0]

e OUT[31:16] e 0oUT[15:0] packe(310]

—]APDRA ————{ADDRA
= |pA ———DIA

WEB
ENB
RSTB

WEB
ENB
RSTB

cLks cLks
addr([7:0) ADDRB i LY pesees
packet[31:16]

DIB DIB
WRITE packet[B1:16] packet[15:0)]

Fig. 2. The Server (or the Client) packet memory.

side and Client side in parallel and eliminating the need for a large reassembly
buffer are our main contributions to improve the process of TCP connection in a
NIDS. This makes it different from the approach in [5]. Data path processing in
parallel is the main feature used when implementing the Server and the Client
TCP stream reassembly in FPGA. Thereby the performance of NIDS facilitated
by the method could be enhanced.

3 Experiments

Our implementation of this study is analyzed by using the ISE FPGA tool from
Xilinx [6]. Designs are to be mapped onto a Virtex XCV1000-6 FPGA.

All individual modules such as TCP connection state, TCP stream reassem-
bly unit and DMUX are implemented in VHDL. The simulation of those func-
tions were conducted by the Modelsim XE II v6.5a simulator [6].

Except for the packet parsing, the whole system has been placed and routed
into a XCV1000-6 FPGA. The minimum clock period for data from input to
output is 10.467 ns which corresponds to a throughput of 3.06 Gbps.

However in IP/TCP networks, the Server often needs to be able to handle
multiple connections simultaneously. Hence, multiple TCP connections have to
be considered in this study. The process which consumes most SLICEs in the
FPGA is the module which does doing the TCP three way handshake. Although
there are 12288 SLICEs in one XCV1000-6 FPGA, the possibility of having
multiple TCP connections is limited to the capability of implementing units of
the “Server packet” memory and the “Client packet” memory in one such FPGA.
The reason for this is that the height of the CLB array in one FPGA decides the
number of block SelectRAMs, consequently determining the size of the packet
units. One XCV1000-6 FPGA with the amount of 32 block SelectRAMs can
therefore implement only 8 TCP connections. Although the size of the SLICES
of such an FPGA should be checked to see if it is enough to implement remaining
modules of 8 TCP connections simultaneously.

By using a Virtex XCV812E FPGA which has 280 block SelectRAMs as used
in [5], 70 multiple TCP connections can be expected to be implemented in one
FPGA.

4 Conclusions

Stateful inspection over a TCP connection is studied and implemented in FPGA
based hardware to remove the bottleneck of TCP connection in a network traffic
environment. A novel approach using reconfigurable hardware is introduced. Ex-
periments show that the performance could be improved by this implementation
to a throughput of 3.0 Gbps.

References

1. Michael Clarkin. ”Comparison of CyberwallPLUS Intrusion Prevention and Current
IDS technology”. NETWORK-1, Security Solutions, Inc., White Paper.

[\

. J. Postel. ”Request For Comment 793, Transmission Control Protocol”. 1981.
Sergei et al. "SNORTRAN: An Optimizing Compiler for Snort Rules”. Fidelis
Security Systems, Inc., 2002.

Shaomeng Li et al. ”FExploiting Reconfigurable Hardware for Network Security”. in
Proc. of 11th Annual IEEE Symposium on Field-Progammable Custom Computing
Machines(FCCM’03), 2003.

Marc Necker et al. ”TCP-Stream Reassembly and State Tracking in Hardware”. in
Proc. of 10th Annual IEEE Symposium on Field-Progammable Custom Comput-
ing Machines(FCCM’02), School od Electrical and computer Engineering, Georgia
Institute of Technology, Atlanta, GA, 2002.

http:/ /www.zilinz. com.

