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Abstract. Evolvable Hardware (EHW) has been proposed as a new
method for designing systems for complex real world applications. One
of the problems has been that only small systems have been evolvable.
This paper indicates some of the aspects in biological systems that are
important for evolving complex systems. Further, a divide-and-conquer
scheme is proposed, where a system is evolved by evolving smaller sub-
systems. Experiments show that the number of generations required for
evolution by the new method can be substantially reduced compared to
evolving a system directly. However, there is no lack of performance in
the final system.

1 Introduction

Evolvable hardware (EHW) has been introduced as a target architecture for
complex system design based on evolution. So far a very limited number of real
applications have been proved to be solvable by this new scheme. There are
several reasons for this. One is the problem of evolving systems based on a long
chromosome string. The problem has been tried solved by using variable length
chromosome [1]. Another option, called functional level evolution, is to evolve at
a higher level than gate level [2]. Most work is based on fixed functions. However,
there has been work in Genetic Programming for evolving the functions [3]. The
method is called Automatically Defined Functions (ADF) and is used in software
evolution.

Both gate and function level of evolution have been applied to real applica-
tions. Simulations of data compression using function level evolution indicates
performance comparable to other compression methods like JPEG compression
[4]. The scheme is designed for implementation in a custom ASIC device. A func-
tion based FPGA has been proposed for applications like ATM cell scheduling
[5] and adaptive equalizer in digital mobile communication [6]. Except for the
few real problems studied, there is a larger range of small and non-real problems,
see [7, 8].

This paper presents some concepts from biological systems and how they
can be applied into architectures for evolvable hardware to be used for real
applications.

The next section introduces the aspects from biological systems influencing
on evolvable hardware. Section 3 presents a new scheme for evolving hardware.



Results from experiments are given in Section 4, which are followed by conclu-
sions in Section 5.

2 A Framework for Evolvable Hardware

2.1 The Inspiration from Nature

The idea behind evolutionary schemes is to make models of biological systems
and mechanisms. From nature the following two laws seem to be present:

1. The Law of Evolution. Biological systems develop and change during gener-
ations by combination and mutation of genes in chromosomes. In this way,
new behavior arises and the most competitive individuals in the given en-
vironment survive and develop further. Another expression for this law is

phylogeny [9].

2. The Law of Learning. All individuals undergo learning through its lifetime.
In this way, it learns to better survive in its environment. This law is also
referred to as epigenesis [9].

The two laws are concerning different aspects of life and should be distin-
guished, when studying artificial evolution. Most work on genetic algorithms are
inspired by the Law of Evolution, while artificial neural networks are considering
learning. Biological memory is still not fully understood. However, a part of the
memory is in the biological neural networks. An interesting approach to design
artificial evolutionary systems would be to combine the two laws into one sys-
tem. One approach to this is Evolutionary Artificial Neural Networks (EANNs),
which adapt their architectures through simulated evolution and their weights
through learning (training) [10]. Neural networks are based on local learning,
while the evolutionary approach is not [11].

Concerning FPGAs, this approach could be implemented by evolving a con-
figuration bit string into a network of cells. After evolution their connections
(weights) become trained.

Multi-Environment Training. So far artificial systems have mainly been
trained by a single training set or in limited environment. This is in contrast to
biological organisms trained to operate in different and changing environments.
When training in a limited environment, the system with maximum fitness is
selected. This fitness value does not have to represent the system with the best
generalization [11]. It would be an interesting approach to investigate if an ar-
tificial system trained to operate in one environment could be combined with a
similar system trained in other environments. If the resulting system could be
able to contain knowledge about the different environments it would be able to
operate in various environments without retraining. A possible implementation
could be by including a soft switching mechanism between control systems, when
the system enters a new environment. This would be an interesting approach for
e.g. a vacuum cleaner moving from one room to another.



Online Adaptation in Real-Time. Research on evolutionary methods have
been based on one-time learning. However, there is a wish of being able to design
on-line adaptable evolvable hardware. The hardware would then have to be able
to reconfigure its configuration dynamically and autonomously, when operating
in its environment [12]. To overcome the problem of long evolution time, local
learning should be investigated. Further, a time switching approach between
learning and performing could be investigated.

An Appropriate Technology for Biological Modeling. Reconfigurable
hardware like FPGAs are slower than microprocessors. However, a highly inter-
connection ratio is possible. These aspects are similar to those in the biological
neural networks, where the neurons are massively interconnected. However, their
speed of operation is slow. This indicates that reconfigurable technology should
be an interesting approach for solving problems, where the biological brain is
superior to ordinary computers.

2.2 The Basic Building Blocks and Their Interconnections

An evolutionary system would have to be based on some kind of basic unit. The
model of a multi-cellular living organism would be to use a cell, which is able
to reproduce itself by duplicating the full description of the complete organism.
This corresponds to developing an individual (phenotype) from a chromosome
(genotype). One cell could then be used to start reproduction to be carried out
until the full organism is populated with cells [13]. Then, a specialization phase
starts, where each cell interprets one piece of the chromosome depending on the
location in the system. The major problem of this approach named embryolog-
ical development, is the tremendous amount of memory required within each cell
for storing the complete chromosome. Thus, simpler logic gates or higher level
functions have been used as the basic building blocks for evolution.

Most research on evolvable hardware is based on gate level evolution. There
are several reasons for this. One is that the evolved circuit can be partly inspected
by studying the evolved Boolean expressions. However, then the complexity of
the evolved circuit is limited. Functional level evolution has been proposed as
a way to increase the complexity. However, so far experiments have only been
undertaken using ASIC chips. In the work presented in this paper, it is of interest
to study the use of commercial FPGAs to higher than gate level evolution.
Table 1 lists the possible combinations of low level building blocks and their
interconnections.

Combining flip-flops' and feed-back connections have not been applied in
EHW. One of the reasons for this is probably the difficulties and time consum-
ing fitness evaluation of each individual. However, including flip-flops could be
required to solve more complex problems by EHW.

! Flips-flops are essentially logic gates with feed-back connections, but are here listed
as a special building blocks as they are in FPGAs.



Feed-back.-conn.|Flip-flops|Logic Gates|Applic.|Comments

No No No -

No No Yes + |Applied for evolution
in PLD and FPGA.

No Yes No -

No Yes Yes 4?7 |Could be applied to evolve
delayed data networks.

Yes No No -

Yes No Yes + |Applied by Thompson [14]

Yes Yes No -

Yes Yes Yes 4?7 |This would imply evolving
state machines.

Table 1. Possible basic evolvable units and interconnections. “-” indicates a

not applicable combination. “+” means that the combination has already been
applied, while “+7” indicates a possible useful combination.

2.3 Local Learning

The internal operation of FPGAs available today is given by the configuration
bit string loaded from an external source. This is in conflict to the wish that the
operation of each cell in a device should only be based on local interactions with
no global control. This is not a problem during normal operation, but rather
during evolution. To make an FPGA device evolvable based on local interaction,
it is possible to arrange sets of FPGA cells into subsets of cells. Each subset
should be able to be evolved based on local interaction. In this scheme, the
configuration bit string will not be changed during evolution, but rather the
content of the internal registers. The application of local interactions would
make local learning possible. The main challenge of this approach would be how
to implement the genetic operators inside the FPGA.

Cellular Automata (CA) has been introduced to design systems based on
local interactions. An experimental system based on FPGAs has been built for
CA and local learning [9, 15]. The states of the cells in the system are evolved
to oscillate between all zeros and all ones on successive time steps like a swarm
of fireflies.

The long computation time has been one of the major problems for genetic
algorithms, which is present also for evolvable hardware [14]. Evolving a 10x10
corner  a configuration string of 1800 bits, of a 64 x 64 array XC6216 FPGA
required 2 3 weeks. The circuit was evolved to discriminate between two tones.
The long evolution time even for a small circuit indicates that alternative evolu-
tion schemes should be investigated. The inherent parallelism in programmable
hardware should be applied not only for operation, but also for the evolution.

The basic units in FPGAs are logic gates and 1-bit registers. Neural networks,
on the other hand, have been shown to acquire at least 16 bits floating point
values for inputs and weights for the best performance. Thus, further investiga-



tions should be conducted to find the optimal macro-cell size compared to the
network size for evolution at a higher level than gate level. A large or complex
cell structure would lead to a smaller number of such cells within a single FPGA
device. Thus, the network will be small compared to using a simple macro-cell.

3 A New Approach to Hardware Evolution

Evolving systems for real applications of average complexity seem to be a near
unobtainable task by the computer hardware available today. As mentioned ear-
lier, several approaches have been suggested to overcome the problems, including
variable chromosome length and function level evolution.

In this section, a scheme based on the principles described in the previous
sections will be investigated. The method introduces a new approach to evolution
called increased complexity evolution. The idea is to evolve a system gradually as
a kind of divide-and-conquer method. Evolution is first undertaken individually
on a large number of simple cells. The evolved functions are the basic blocks
used in further evolution or assembly of a larger and more complex system. This
may continue until a final system is at a sufficient level of complexity.

The main advantage of this method is that evolution is not performed in
one operation on the complete evolvable hardware unit, but rather in a bottom-
up way. The chromosome length can be limited to allow faster evolution. The
problem of the approach would be how to define the fitness functions for the
lower level sub-systems. However, for some applications it is possible to partition
each training vector. Further, low level training vectors e.g. speech phoneme
recognition, can be used in the first evolution, followed by a higher level evolution
using the evolved first level systems e.g. to do word recognition. In this paper,
the principles will be illustrated by a character recognition system. The evolution
will be based on gate level, but can easily be changed to function level. The target
EHW is an array of logic gates similar to that found in the Xilinx XC6200 and
illustrated in Figure 1.

The array consists of n number of layers of gates from input to output. Except
for layer 1, the Logic Gate (LG) is either a Buffer, Inverter, AND or OR gate. In
layer 1, only Buffer and Inverter gates are available. Each gate’s two inputs? in
layer [ is connected to the outputs of two gates in layer /— 1. The function of each
gate and its two inputs are determined by evolution. The evolution is undertaken
off-line using software simulation. However, since no feed-back connections are
used and the number of gates between the input and output is limited to n,
the real performance should equal the simulation. Any spikes could be removed
using registers on the output gates.

The application to be used in the experiments are the problem of recognizing
characters of 5 x 6 pixels size, where each pixel can be 0 or 1. Each of the pixels is
connected to one input gate. In addition to the 30 pixel inputs, two extra inputs
are included as a bias of value 0 and 1, respectively. The output of the gate array

2 Buffer and Inverter gates have only one input.
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Fig. 1. An array of gates. “I.G” indicates logic gate and can be Buffer Inverter,

AND or OR gate.

consists of one output gate for each character the system is trained to recognize.
During recognition, the output gate corresponding to the input character should
be 1, while the other outputs should be 0. Thus, if the training set consists of m
different characters, the gate array should consist of m output gates.

The aspect of increased complexity evolution is introduced by the way the
evolution is undertaken. We compare evolving a system directly to evolving
sub-systems. In the former case, the system is evolved to classify all training
vectors in the training set. In the latter case, an evolved sub-system is able to
classify a subset of the training characters. That is, each subsystem input all
the 30 input pixels and all training vectors are applied during fitness evaluation.
However, each subsystem has a limited number of output gates. In this way,
the sub-systems are evolved without lack of generalization. The benefit is that
each gate array is smaller and thus, should easier become evolved to perform
the correct operation. For this application, the integration of sub-systems are
straightforward by running them in parallel. For more complex applications,
like speech recognition, a next level of evolution could be applied, where the
sub-systems are the basic block in the evolution. The number of gate layers in
the array is flexible and different numbers will be tested in the experiments.
A large number would allow for more complex logic expressions. However, the
chromosome becomes longer and obtaining a correctly evolved circuit could be
more difficult.

Except for the output layer in the gate array, 32 gates are applied in each
layer in the array. Thus, the complete system will be larger as the number of sub-



systems increases. The main motivation for this work is to allow for evolution
of complex systems and limiting the number of gates is not regarded as an
important topic. The reason for this is that the main problem of today’s research
seems to be the lack of evolutionary schemes overcoming the chromosome length
problem, more than the lack of large gate arrays.

The basic Goldberg style of GA was applied for the evolution with a popula-
tion size of 50. For each new generation an entirely new population of individuals
is generated. The mutation rate is 0.001. For each test, ten circuits were evolved
and the circuit requiring the least number of generations was picked as the best.

4 Results

This section describes the results of evolving the character recognition system.
Two separate experiments have been conducted. One with four characters and
one with eight characters. A larger number of characters was also tested, but it
was impossible to evolve a complete system in one operation.

Type of system 3 gate layers in array|4 gate layers in array
4 characters (A,B,C,D) 274 101

2 characters (A,B) 1 7

2 characters (C,D) 35 9

Table 2. The result of evolving a circuit for classifying four patterns, for three
and four layers of gates in the array.

First, the experiment using four characters was undertaken. Table 2 shows
the required number of generations used for obtaining a circuit that correctly
classifies the patterns in the training set. In average, over ten times as many
generations are required for evolving the system for recognizing four characters
compared for each of the two sub-systems. Each of the sub-systems recognizes
two characters. When other characters in the training set are input, the system
is evolved to output the value 0 on each output.

The chromosome length is not very different for the two systems 846 and
822 bits for the 4 and 2 character system®, respectively. However, the number
of outputs influencing the fitness evaluation is half the number for the complete
system. Thus, a correct circuit can easier be found. In average, less number of
generations is required for systems using four layers of gates compared to three.
One layer of gates requires 384 chromosome bits.

Table 3 shows the results for the same kind of experimental setup, but with 8
patterns to be classified. As for 4 patterns, the number of generations required for
evolving a classification system increases with the number of patterns. However

3 This is for systems with four layers of gates.



Type of system 3 gate layers in array|4 gate layers in array

8 characters (A,...,H) 2709 3514
4 characters (A,B,C,D) 697 941
4 characters (E,F,G,H) 776 179
2 characters (A,B) 275 49
2 characters (C,D) 93 63
2 characters (E,F) 133 75
2 characters (G,H) 4 38

Table 3. The result of evolving a circuit for classifying eight patterns, for three
and four layers of gates in the array.

as mentioned earlier, the final systems still has the same classification ability. It is
interesting to observe in this experiment that for the systems evolved to classify
many patterns, a larger number of generations is required for four layers of gates
compared to three layers of gates. This is in contrast to the first experiment and
may indicate that a shorter chromosome string is beneficial for a larger training
set.

In this work, no separate test set has been used and thus, no concern about
the overall generalisation and noise robustness has been included. The main goal
has been to show that the evolution time can be reduced by dividing the systems
into smaller sub-systems.

Both experiments show that the evolution time can be reduced by dividing
the problem into sub-tasks to be evolved separately. This shows that the in-
creased complexity evolution method should be promising for evolving complex
systems for real applications. The scheme should, in future work, be tested for
more complex applications and by using higher level functions.

5 Conclusions

This paper has introduced some aspects of biological systems to be applied for
evolvable hardware. A scheme, called increased complexity evolution, is intro-
duced. The method is based on sub-system evolution for the design of complex
systems. A character recognition application is used to present one implementa-
tion of the scheme. Tt is shown that the number of generations can be drastically
reduced by evolving sub-systems instead of a complete system.
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